Gravity and Gauge Theory∗

نویسنده

  • Steven Weinstein
چکیده

Gauge theories are theories that are invariant under a characteristic group of “gauge” transformations. General relativity is invariant under transformations of the diffeomorphism group. This has prompted many philosophers and physicists to treat general relativity as a gauge theory, and diffeomorphisms as gauge transformations. I argue that this approach is misguided. The theories of three of the four fundamental interactions of nature are “gauge” theories. A central feature of such theories is their invariance under a group of local transformations, i.e., transformations which may vary from spacetime point to spacetime point. The characteristic group of these “gauge” transformations is called the “gauge group.” The theory of the fourth interaction, gravity, is general relativity. General relativity has its own invariance group, the diffeomorphism group. Insofar as one understands “gauge theory” to mean a theory in which “the physics” (more on the ambiguity of this term later) is invariant under a certain group of transformations, one might be tempted to construe general relativity as a gauge theory.1 Just such a construal Þgures in recent work of Belot (1996) and Belot & Earman (1999a,b), who follow many (but not all) physicists in treating the diffeomorphism group as a gauge group, and who draw implications for the “hole argument.”2 In this paper, I show that general relativity is not a gauge theory at all, in the speciÞc sense that “gauge theory” has in elementary particle physics. This issue is of crucial importance to attempts to quantize general relativity, because in quantum theory, the generators of gauge transformations are emphatically not treated as observables, while the generators of spatiotemporal (e.g., Lorentz) transformations are in fact the canonical observables. Thus the discussion in this paper sheds light on the origin of some of the deep and longstanding difficulties in quantum gravity, including the “problem of time”, a familiar form of which arises from treating the parametrized time-evolution of canonical general relativity as a gauge transformation.3 ∗Thanks to Arthur Fine, Chris Isham, and Bob Wald for helpful discussions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Geometrical Formulation of Gauge Theory of Gravity

Differential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantum gauge theory of gravity which is proposed in the references hep-th/0109145 and hep-th/0112062 is formulated completely in the framework of traditional quantum field theory. In order to study the relationship between quantum gauge theory of gravity and traditional quantum gravity which is ...

متن کامل

A Chern-simons E8 Gauge Theory of Gravity in D = 15, Grand Unification and Generalized Gravity in Clifford Spaces

A novel Chern-Simons E8 gauge theory of Gravity in D = 15 based on an octic E8 invariant expression in D = 16 (recently constructed by Cederwall and Palmkvist) is developed. A grand unification model of gravity with the other forces is very plausible within the framework of a supersymmetric extension (to incorporate spacetime fermions) of this Chern-Simons E8 gauge theory. We review the constru...

متن کامل

Gauge Theory of Gravity

The quantum gravity is formulated based on principle of local gauge invariance. The model discussed in this paper has local gravitational gauge symmetry and gravitational field appears as gauge field. The problems on quantization and renormalization of the theory are also discussed in this paper. In leading order approximation, the gravitational gauge field theory gives out classical Newton’s t...

متن کامل

Quantum Gauge Theory of Gravity

The quantum gravity is formulated based on principle of local gauge invariance. The model discussed in this paper has local gravitational gauge symmetry and gravitational field is represented by gauge field. In leading order approximation, it gives out classical Newton’s theory of gravity. It can also give out Einstein’s field equation with cosmological constant. For classical tests, it gives o...

متن کامل

Two-Dimensional Gravity and Nonlinear Gauge Theory

We construct a gauge theory based on nonlinear Lie algebras, which is an extension of the usual gauge theory based on Lie algebras. It is a new approach to generalization of the gauge theory. The two-dimensional gravity is derived from nonlinear Poincaré algebra, which is the new Yang-Mills like formulation of the gravitational theory. As typical examples, we investigate R2 gravity with dynamic...

متن کامل

Investigation of k-string energy using the gauge/gravity correspondence

The AdS/CFT correspondence, or in a more general sense, the gauge/gravity correspondence, is a duality between a string theory or gravity defined on one space and a gauge theory living on the conformal boundary of the same space. The AdS/CFT correspondence has drawn a tremendous amount of attention since the late 1990’s. After all, it sounds so promising and exciting to connect two drastically ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002